Optical chirality without optical activity: How surface plasmons give a twist to light
نویسندگان
چکیده
منابع مشابه
Optical chirality without optical activity: How surface plasmons give a twist to light.
Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar nanostructured metallic objects acting as isolated ...
متن کاملMetamaterials: optical activity without chirality.
We report that the classical phenomenon of optical activity, which is traditionally associated with chirality (helicity) of organic molecules, proteins, and inorganic structures, can be observed in artificial planar media which exhibit neither 3D nor 2D chirality. We observe the effect in the microwave and optical parts of the spectrum at oblique incidence to regular arrays of nonchiral subwave...
متن کاملOptical Isolator Utilizing Surface Plasmons
Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competiti...
متن کاملLight with enhanced optical chirality.
Tang and Cohen [Phys. Rev. Lett.104, 163901 (2010)] recently demonstrated a scheme to enhance the chiral response of molecules, which relies on the use of circularly polarized light in a standing wave configuration. Here we show a new type of light that possesses orbital angular momentum and enhanced chiral response. In the locations where the beams show enhanced optical chirality, only the lon...
متن کاملHow To Identify Plasmons from the Optical Response of Nanostructures
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light-matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2008
ISSN: 1094-4087
DOI: 10.1364/oe.16.012559